
OR I G I N A L AR T I C L E

SD‐WLB: An SDN‐aided mechanism for web load balancing
based on server statistics

Kiarash Soleimanzadeh1 | Mahmood Ahmadi1 | Mohammad Nassiri2

1Computer Engineering and Information
Technology Department, Razi University,
Kermanshah, Iran.
2Faculty of Engineering, Bu-Ali Sina
University, Hamedan, Iran.

Correspondence
Mahmood Ahmadi, Computer Engineering
and Information Technology Department,
Razi University, Kermanshah, Iran.
Email: M.ahmadi@razi.ac.ir

Software‐defined networking (SDN) is a modern approach for current computer

and data networks. The increase in the number of business websites has resulted

in an exponential growth in web traffic. To cope with the increased demands,

multiple web servers with a front‐end load balancer are widely used by organiza-

tions and businesses as a viable solution to improve the performance. In this

paper, we propose a load‐balancing mechanism for SDN. Our approach allocates

web requests to each server according to its response time and the traffic volume

of the corresponding switch port. The centralized SDN controller periodically col-

lects this information to maintain an up‐to‐date view of the load distribution

among the servers, and incoming user requests are redirected to the most appro-

priate server. The simulation results confirm the superiority of our approach com-

pared to several other techniques. Compared to LBBSRT, round robin, and

random selection methods, our mechanism improves the average response time by

19.58%, 33.94%, and 57.41%, respectively. Furthermore, the average improvement

of throughput in comparison with these algorithms is 16.52%, 29.72%, and

58.27%, respectively.

KEYWORD S

Load balancing, OpenFlow, SDN, Server response time, Switch port traffic

1 | INTRODUCTION

Software‐defined Networking (SDN) [1,2] is a new para-
digm in networking, which provides manageable, scalable,
and cost‐effective network architecture. Software‐Defined
Networking decouples a network's control plane from the
data plane; therefore, the data plane includes only forward-
ing devices and the control plane is implemented in a logi-
cally centralized entity called controller (or network
operating system). Simple network (re)configuration, evolu-
tion, and policy enforcement are merits of such decoupling
[3]. Controllers are categorized into two types: centralized
and distributed. Initially, centralized controllers, as a single
entity, were extended to control all networking devices.

However, centralized controllers suffer from problems
related to scalability, single point of failure, and resource
limitation; therefore, distributed controllers, which control
networks cooperatively, were proposed. On the other hand,
SDN utilizes networking applications such as web load bal-
ancers and deep packet inspection. A web load balancer
distributes the web request workload among several web
servers. Traditional load balancers operate based on the
web servers’ load and cannot make decisions based on the
response time of the servers and the current traffic of the
switches. The current SDN load balancers do not take into
account the response time of the servers and traffic of the
switch ports in their decisions. However, the response time
of each server and the current traffic of each switch port

- -
This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2019 ETRI

Received: 15 April 2018 | Revised: 28 August 2018 | Accepted: 5 September 2018

DOI: 10.4218/etrij.2018-0188

ETRI Journal. 2019;41(2):197–206. wileyonlinelibrary.com/journal/etrij | 197

https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0002-0703-5949
https://orcid.org/0000-0002-0703-5949
https://orcid.org/0000-0002-0703-5949
http://www.kogl.or.kr/info/licenseTypeEn.do
http://www.wileyonlinelibrary.com/journal/etrij

are two critical factors that need to be considered while
deciding and selecting the most suitable server for process-
ing the current request. Nowadays, web applications are
executed on multiple servers in order to handle the increas-
ing number of users’ requests demanding web content. For
this reason and due to the capacity limitation of servers,
server‐based clusters (also called server farms) are becom-
ing more popular. Hence, load‐balancing mechanisms are
utilized to distribute incoming requests among the servers.
In comparison to traditional networks, server load balanc-
ing in SDN can enhance the performance of the load‐balan-
cing server and can help overcome the problems related to
its implementation. Load balancing provides many advan-
tages such as scalability, availability, manageability, and
security of websites. In particular, load balancing amelio-
rates the problems associated with the scalability of an
application or server cluster by distributing the load across
multiple servers. Load balancing can also redirect the traf-
fic to alternate servers if a server or application fails. Load
balancing allows network and server administrators to
move an application from one server to another easily;
hence, manageability is improved. In addition, load‐balan-
cing solutions protect server clusters from multiple forms
of Denial‐of‐Service (DoS) attacks; thus, security is
enhanced, and the incoming request to a Web system can
be analyzed before sending it to the corresponding server
[4]. It should be noted that the functions of load balancers
in datacenters or IP networks are different from those in
SDN networks. In datacenters or IP networks, the function
of load balancing is controlled by a load‐balancing device.
When a new flow enters the network, it first goes through
the load‐balancing device, and the load‐balancing device
selects the most appropriate server as the destination based
on the current network status. Then, the IP address of the
selected destination server is written in the header of the
new flow. Clearly, the routing decision is made only at the
time of selection of the destination server, while the net-
work status is changed over time. In such conditions, there
may be other servers in the network that are more suitable
compared to the destination server selected by the load‐bal-
ancing device. Therefore, the load‐balancing decision may
not result in an optimal selection. In an SDN load balancer,
when a new flow enters the switch, it will be forwarded to
the controller. The controller selects the destination server
(similar to that in the case of IP networks) only for the first
time, and is enabled to act in real‐time based on the net-
work status the next time. Therefore, the SDN load bal-
ancer can select the destination server over time in an
optimal way [5].

This paper focuses on the advantages of using load‐bal-
ancing solutions to increase the performance of the Web
system in SDN‐based networks. Some SDN controllers
have a basic load balancer, and do not assign requests

dynamically to servers based on the network status. In this
paper, we propose a new load‐balancing algorithm, which
periodically collects information on the traffic through a
switch's ports and the server response time. Then, the load
balancer adapts its strategies for allocating web requests
based on the collected information. In addition, we com-
pare the proposed approach with round robin, random
selection, and Load Balancing by Server Response Time
(LBBSRT) [6] approaches in an SDN environment. Our
proposed mechanism achieves higher throughput and lower
response time in comparison to the other load‐balancing
methods by considering the traffic through a switch's ports
and the server response times simultaneously. The contri-
butions of this paper are as follows:

• Proposal of an SDN-based mechanism for balancing
requests load among web servers. The proposed SDN-
based load balancer distributes the incoming web
requests according to both the traffic volume and the
response time of each web server.

• Through in-depth simulations, we evaluate the perfor-
mance of our proposed approach and compare it with
other well-known solutions.

The remainder of this paper is organized as follows:
Section 2 briefly describes related works. Section 3 pre-
sents our contribution, which relies on a statistical SDN‐
based mechanism for balancing web requests among web
servers. Section 4 reports the evaluation results obtained by
our approach, round‐robin, random selection, and LBBSRT
in a software‐defined networking scenario. Finally, we con-
clude the paper in Section 5.

2 | RELATED WORKS

In this section, we review other researches related to our
work. Ananta [7] is a distributed layer‐4 load balancer and
NAT specifically designed to meet the scale, reliability,
tenant isolation, and operational requirements of multi‐
tenant cloud environments. Its design was heavily influ-
enced by the Windows Azure public cloud [8]. While Ana-
nta is a good engineering effort, it does not follow open
source standards and cannot be used easily by other people.
DUET [9] is an integrated load‐balancing approach that uti-
lizes two methods of load balancing, namely load balanc-
ing based on switching and software load balancing.
DUET provides high capacity, low latency, high availabil-
ity, and high flexibility. This method utilizes the capabili-
ties of conventional switches (such as traffic splitting and
encapsulation of packets) to perform hardware load balanc-
ing, and in the case of breakdown of switches, a small soft-
ware load balancing is implemented. Therefore, due to the

198 | SOLEIMANZADEH ET AL.

ineffective use of software capabilities, it should be consid-
ered a hardware approach that has a low degree of flexibil-
ity. In [10], Wang et al. used a binary tree to represent the
space of all possible IP addresses. The i’th level in the bin-
ary tree corresponds to the i’th most significant bits of the
IP address. In a subtree, the nodes corresponding to a pre-
fix is matched from the root of the path. If it is assumed
that each IP address stores equal load, a tree data structure
is useful since the load is distributed uniformly in the two
subtrees. An algorithm is provided to minimize the expen-
sive TCAM entries used to represent the tree.

In [10], AppSwitch system was proposed for load bal-
ancing in key‐value storage systems. AppSwitch, unlike the
existing key‐value load balancers, requires a single message
from the client to the server. In [11], a load balancer based
on automata was presented. In this approach, the selection
rate of the servers is adjusted according to the performance
of information retrieval.

In [12], a wildcard rule method and an enhanced param-
eterized host partition method were proposed. It was shown
that the devised approach is more efficient when a binary
tree is used. These methods do not simultaneously consider
the status of the servers and the traffic of the links, which
are two important factors. In [13,14], Li et al. proposed a
dynamic load‐balancing algorithm to schedule flows effi-
ciently for fat‐tree networks, which provide multiple alter-
native paths among a single pair of hosts. To search a path
in a recursive manner and to evaluate the achieved real‐
time traffic statistics from OpenFlow protocol, the hierar-
chical feature of fat‐tree network is utilized. In [1], a load‐
balancing approach based on the server response time (as
LBBSRT) was proposed. This approach utilizes the advan-
tages (flexibility) of SDN by using the real‐time response
time of each server measured by the controller for load bal-
ancing. In [15], a Distribution‐Aware Load Balancing
(FDALB) approach was proposed. It decreases the flow
completion time and enables high scalability. The FDALB
splits the flow into two categories, namely short flows and
long flows, depending on a threshold. Subsequently, dis-
tributed and centralized algorithms are used to balance the
traffic of short and long flows, respectively. In [16], a
load‐balancing strategy based on fuzzy logic (LBSFL) was
proposed. In this approach, the correlation among several
parameters that influence load balancing is analyzed and
the load of multiple virtual servers is obtained using a
fuzzy logic algorithm. Then, the real‐time load status of the
virtual servers is examined, the lightest virtual server is
selected to handle the request, and if necessary, the sleep/
restart policy of the server is set. Finally, to verify the cor-
rectness and effectiveness of this load‐balancing algorithm,
an SDN simulation platform is constructed. In [5], a novel
type of controller state synchronization approach and Load
Variance‐based Synchronization (LVS) are proposed for

multi‐controller multi‐domain SDN networks. This
improves the performance of the proposed controller. When
the load of an individual server or a domain exceeds a
specific threshold, the LVS‐based approach utilizes effi-
cient state synchronization. This LVS approach reduces the
synchronization overhead of controllers. The authors claim
that LVS‐based approaches achieve loop‐free forwarding
and good load‐balancing performance with a much fewer
number of synchronizations. In [17], a load‐balancing
mechanism, which implements a hierarchical control plane
with both a meta‐control plane and a local control plane, is
proposed for use in multiple‐controller SDN networks. The
meta‐control plane analyzes the resources and utilization of
the local control plane to optimize the processing perfor-
mance. This approach helps the load balancing of the local
control plane to improve the data plane performance and
overcome the overheads of centralized control in a net-
work. This work analyzes the proposed load‐balancing
approach in multiple‐controller SDN networks. The
achieved results show that the proposed meta‐controller,
which operates based on the manager approach, monitors
and deals with the loading of the overloaded local con-
troller. In [18], a datacenter network architecture based on
SDN was proposed. It utilizes the topology‐aware
addresses in each switch to decrease the size of the for-
warding table and human errors. In this paper, we propose
a new load‐balancing mechanism for web server farms,
relying on a centralized controller in SDN, which periodi-
cally collects information on the traffic through a switch's
ports and the server response time and then assigns the
incoming flow to the proper web server.

3 | DESIGN AND IMPLEMENTATION
OF THE PROPOSED SDN‐BASED
LOAD BALANCER

In this paper, we propose a load‐balancing algorithm that
works based on the traffic through the ports of a switch
and the server response time. Figure 1 depicts a simplified
view of the SDN architecture, whereas Figure 2 depicts our
proposed load balancer system.

Our load balancer module is configured in the flood-
light SDN controller, along with the other modules. Cli-
ents send their requests over the Internet to the datacenter.
The gateway switch sends the first packet of each flow
through an OpenFlow protocol to the controller in the
form of a Packet_In message. Packet_In message is an
OpenFlow message, which is issued from the switch to
the controller. The controller places the Packet_In message
on its modules for processing. Finally, after the load bal-
ancer selects the best server, a new rule for this flow is
installed in the switch, and the flow is forwarded to the

SOLEIMANZADEH ET AL. | 199

most efficient server by the switch. The proposed algo-
rithm consists of three components: Server response time
collector component, switch's ports traffic collector com-
ponent, and the best server selector component. The ser-
ver response time collector component and the switch's
ports traffic collector component are responsible for col-
lecting the server response time and the traffic through
the switch's ports, respectively, and the best server selec-
tor component selects the most suitable server based on
the obtained statistics.

3.1 | Server response time collector
component

The operation of this component is depicted in Algorithm
1. After starting up the system (line 1), this component
sends an http request to the server periodically in the uni-
form time slots (lines 2 and 3), and stores the sending time

(line 4). Subsequently, the server response time is calcu-
lated by subtracting the sending time from the time of
receiving the response (line 6), and the calculated response
time is stored in the database (line 7). Moreover, to
increase the performance and to decrease the response time,
Head http messages (which only have a header and no
body) are used. Owing to its performance, the SQlite data-
base is used to store the responses. The server's response
time collector agent in Figure 2 depicts this component.

3.2 | Switch's ports traffic collector
component

This component receives the switch's port traffic periodi-
cally in uniform time slots, and stores it in a database. To
extract the switch's port traffic, either the REST API feature
of the floodlight controller or the OpenFlow port stat mes-
sage can be used. In this paper, the REST API is used. The
switch's port traffic collector component in Figure 2 depicts
this component. The operation of this component is given
in Algorithm 2. After starting up the system (line 1), the
component sends a REST request to the controller (line 3)
in the uniform time slot (line 2). Then, the response of
REST is requested for each switch's port (line 4): To calcu-
late the switch's port traffic in the next round of execution
of Algorithm 2, two temporary variables, namely “previous
total seconds” and “previous total bytes” are initialized (li-
nes 5 and 6). These variables are used to store the values of
time and traffic obtained by the REST request. In the next
round, these variables are used to calculate the amount of
time spent and the transferred traffic from the previous time
slot until now (lines 8 and 9). Subsequently, the value of
the traffic is calculated by dividing the volume of data by
the time of transferring of that data (line 10). After updating
the values of “previous total byte” and “previous total time”
to the current values for the next round (lines 11 and 12),
the port's traffic is stored in the database (line 13).

3.3 | The best server selector component

This component investigates each received packet-in mes-
sage to check whether the received packet belongs to a
new flow that needs to be processed by the servers (lines
2, and 3). Then, for each server (line 4), it reads m recent
traffic samples and m recent server response time samples
from the database (lines 5, and 6) for the port connected to
the server. After that, for each server, the metric introduced
in Eq. 1 is calculated (line 7). The server with the lowest
value of this metric is selected for processing the current
flow (line 8), and the packet that was received using the
“packet‐in” message by the controller is sent to the selected
server using the “packet‐out” message. Finally, the related
rule is inserted into the flow table of the switch for the

Application layer

App

Control layer

Infrastructure layer

App App

Network services (modules)
SDN

controller

Open southbound API (OpenFlow)

Open northbound API

Openflow switches

FIGURE 1 Software‐defined networking architecture

Data center

Floodlight controller

Proposed load balancing module

Component 1 Component 2 Component 3
Server’s
response

time
collector

Switch’s
ports
traffic

collector

Server
selector

O
th

er
 m

od
ul

es

O
th

er
 m

od
ul

es

O
pe

nF
lo

w

Clients

Internet

Open vSwitch

Servers

FIGURE 2 Proposed load balancer system

200 | SOLEIMANZADEH ET AL.

next incoming packets to overcome the forwarding of the
new packet to the controller.

Algorithm 1 presents the server response time collector
component, which performs the following tasks periodi-
cally for each server at system startup: An HTTP request is
sent to the server, and Tsend, which is the request sending
time, is recorded (lines 4–5). Upon receiving the corre-
sponding response, the time is stored in Tarrive. Then, the
server response time, Tresponse is computed by subtracting
Tsend from Tarrive (line 6). Algorithm 2 presents the switch's
ports traffic collector component, which performs the fol-
lowing tasks periodically: In line 3, the controller requests
the switch's ports statistics through REST API. For each
port, the value of previous_total_bytes and previous_to-
tal_seconds are initialized to 0. These variables store the
values of total bytes and total seconds from the beginning
until the previous execution of this subcomponent (lines 5–
6). The response to the REST API request is parsed and to-
tal received bytes and total seconds are extracted for the
current port (line 7). In lines 8–9, the amount of current
received bytes for the current port is computed by subtract-
ing previous_total_bytes from the current total_bytes. The
same procedure is applied to compute the value of current
duration. Finally, the traffic volume transferred over the
current port is calculated as follows (line 10): port_traf-
fic = (current_bytess × 8)/current_seconds. Here, previ-
ous_total_bytes and previous_total_seconds are also
updated (lines 11–12). Algorithm 3 describes the operation
of the best server selector component. The received Packe-
t_In message is redirected to the other modules if this is
not a user service request. Otherwise, m historical data for
the switch's ports traffic and server response times are
extracted (lines 5–6). These are collected by the switch's
ports traffic collector and server's response time collector
subcomponents. In line 7, the weighted average metric for
each server is calculated using (1). Finally, the most appro-
priate server with the minimum value of weighted average
in the server farm is selected, and the appropriate rules for
this flow are injected to the switch (line 8).

The historical data include the recent server response
time and switch's port traffic extracted using Algorithms 1
and 2 and stored in the database. To allocate a new flow,
which enters a switch, to the best server, m recent response
times for each server and m recent switch's port traffic are
read from the database according to (1). The best server is
selected to process the new flow. The best server is the ser-
ver with the minimum value of the metric in (1). SQlite
database, which is very fast and has high performance, is
used in this study. Upon receiving a request from a web
client, the switch performs a lookup in its table. If its fea-
tures correspond to an existing entry, the switch forwards
this incoming request to the server specified in that entry.
In the case of a mismatch, the switch sends the first packet

ALGORIT HM 1 Server response time collector

Output: The Server Response Time

1. While system startup do

2. If currenttime % t== 0 then

3. For Each server do

4. Send a HTTP request to server and record sending time, Tsend;

5. Record the time of receiving response, Tarrive;

6. Calculate response time by the formula Tresponse Tarrive – Tsend;

7. Store server response time in SQLite database. (Tresponse);

8. End For

9. End if

10. End while

ALGORIT HM 2 Switch’s ports traffic collector

Output: The Switch’s Port Traffic

1. While system startup do

2. If currenttime % t == 0 then

3. Fetch switch’s ports traffic by controller’s REST API;

4. For Each port of switch do

5. previous_total_bytes← 0;

6. previous_total_seconds← 0;

7. Parse response of request and fetch total_bytesand total_seconds fields;

8. current_bytes← total_bytes - previous_total_bytes;

9. current_second← total_seconds - previous_total_seconds;

10. port_traffic← (current_bytess* 8) / current_seconds;

11. previous_total_bytes← total_bytes;

12. previous_total_seconds← total_seconds;

13. Store switch’s ports traffic in SQLite database, port_traffic;

14. End For

15. End if

16. End while

ALGORIT HM 3 Server selector

Input: The Server’s Response Times and Switch’s Ports Traffic
Output: The most appropriate server for processing user request
1. If controller receive a Packet_in message then
2. Parse message;
3. If package is for user service request then
4. For Each server do
5. Fetch mhistorical data for switch’s ports traffic;
6. Fetch mhistorical data for server’s response time;
7. Calculate weighted average by formula (1);
8. Select server with minimum value of weighted average, and add appropriate rules
for current flow and selected server in the switch.
9. End For
10. Else
11. Send to other modules;
12. End if
13. End if

SOLEIMANZADEH ET AL. | 201

of the new flow to the controller through a Packet_In mes-
sage. Then, the controller dynamically selects the most
appropriate server according to Algorithm 3.

Mi ¼ α
SRTi�Min(SRTiÞ

Max(SRTiÞ�Min(SRTiÞ

þβ
SPTi�Min(SPTiÞ

Max(SPTiÞ�Min(SPTiÞ ;

(1)

where α and β are weights whose values are between 0
and 1 and are set by the network administrator. SRTi

denotes m recent response times for the i’th server,
whereas SRTi is the corresponding average SRTi for the
i’th server. The first term of the formula is a normalized
relative form of the average response time for the i’th ser-
ver. SPTi represents the m recent values of the traffic vol-
ume for the i’th port of the switch, and SPTi is its
corresponding average. Again, we use a normalized rela-
tive form for the traffic volume on port i. Mi is our com-
posite metric, which is a weighted average of both the
normalized metric for the response time and the traffic
volume. The alpha value in (1) depends on the network
or datacenter infrastructure where the load balancer is
located. In (1), the unit for the switch's port traffic is bit
per second, and the unit for the server response time is
second. The reason for normalizing the average traffic val-
ues of the ports of the switch and the server response
time is to remove their units, so that we can take the sum
of the two numbers without the units. The controller com-
putes the value of (1) for each server upon the arrival of
a new flow. It chooses the server with the minimum value
of Mi, and then setups appropriate flow rules by Open-
Flow FlowMod message for the selected server in the
switch.

Figure 3 shows the messages that are exchanged among
the client, Open vSwitch, load balancer, and server in the
proposed method. First, the client sends a request to a Vir-
tual IP address, due to the lack of a proper rule for flow in
the switch. The switch sends the first packet of flow with
OpenFlow Packet_In message to the controller. The con-
troller executes the proposed load‐balancing method, writes
the appropriate rules for current flow in the switch, and
sends the first packet of flow to the selected server by
using the Packet_Out message. For subsequent requests
belonging to the same flow, the same rule is applied. Then,
the server processes the requests and returns the response
to the Virtual IP address, and the switch redirects the
response (with changes in the source address of the
requests) to the client based on matched rule.

In the load balancer, we use Destination NAT (DNAT)
to distribute the incoming request to the appropriate server
according to the algorithm. In addition, we use Source
NAT (SNAT) for the responses. Source NAT (SNAT)

changes the source address in the IP header of a packet. It
may also change the source port in the TCP/UDP headers
according to the conditions. Typically, it is used to change
a private address/port into a public address/port for the
packets leaving the network. Destination NAT (DNAT)
changes the destination address in the IP header of a
packet. It may also change the destination port in the TCP/
UDP headers according to the conditions. Typically, it is
used to redirect the incoming packets with a destination
public address/port to a private IP address/port inside the
network.

4 | PERFORMANCE EVALUATION

To implement our method, we use Floodlight [13], which
is an SDN controller offered by BigSwitch networks that
works with the OpenFlow protocol to orchestrate traffic
flows in an SDN environment.

We configured our topology with Mininet [19] simula-
tor in a Python script. Mininet creates virtual networks
using process‐based virtualization and network namespaces.
In our topology, as shown in Figure 2, we have multiple
client nodes, all of which are connected to an OpenvSwitch
[20]. We configured a custom HTTP server in our servers,
which listens to port 80 and responds to the HTTP
requests. A load balancer module exists in the controller,
which is composed of three components: server response
time collector component, switch's port traffic collector
component, and best server selector. For generating HTTP
requests, we have written a custom application in .NET
Core [21]. .NET Core is a cross‐platform, free and open‐
source program that manages the software framework intro-
duced by Microsoft. In addition, we have written code for
our servers in .NET Core using C#, which is supported by
Microsoft for multiplatform applications. Furthermore, the
server has been programmed and configured using the
same platform. As existing traffic generating tools did not
meet our conditions and often crash at the time of high‐
traffic creation, we decided to create a customized applica-
tion for traffic generation. Each user requests 500 objects,
having sizes between 100 KB and 100 MB. The aim of
this experiment is the evaluation of a load balancer, which
needs high throughput with the guarantee of the lowest
possible download time. Table 1 depicts the evaluation
parameters.

In Table 1, α and β are the weights of the weighted
arithmetic mean used to select the best servers. t denotes
the assumed time slot to extract the server's response time
and the switch's port traffic in a periodic manner. m
denotes the recent values of response time of the servers
and port traffic of the switches that is used to select the
best server when a new flow is entered. The m recent

202 | SOLEIMANZADEH ET AL.

values are retrieved from a database. These values have
been experimentally achieved and can be set by the admin-
istrator. In the meantime, in the evaluation of the proposed
approach, four servers are used. The topology of the pro-
posed load balancer system is constructed in a virtual
machine (VM). Table 2 depicts the configuration of our
proposed system topology. Our VM has a CPU with 8
cores and 10‐GB RAM. The links between clients‐switch
have a 1000‐Mbps bandwidth and switch‐servers have a
100‐Mbps bandwidth. The load balancer has a VIP address
and all client's requests are sent to this virtual IP address.
Therefore, the server's IP address is hidden from the cli-
ents. Indeed, the clients only know the VIP address. The
virtual IP (VIP) is the load‐balancing instance where the
world points its browsers to get to a site. A VIP has an IP
address, which must be publicly available to be useable.
Usually, a TCP or UDP port number is associated with the
VIP, such as TCP port 80 for web traffic. Usually, there
are multiple real servers, and the VIP will spread traffic
among them using an algorithm. Indeed, a VIP address
maps one external IP address and one external port to mul-
tiple possible IP addresses and ports. It can also translate
an external port to a different internal port. The VIP
addresses map traffic received at one IP address to another
address based on the destination port number in the TCP
or UDP segment header. Therefore, clients do not need to
know server IP addresses, and server‐side changes are very
convenient.

The system is designed to respond to client requests
based on Zipf's law [22]. Thirty different clients send their
requests, which is based on probabilities of Zipf's law, as
shown in Table 3. Fifteen clients send their request contin-
uously and other infrequently with a 2‐s delay. Zipf's law
proposes the distribution of requests in the real world.
According to Zipf's law, a higher percentage of requests
have lower‐sized responses, and fewer requests have larger‐
sized responses. Table 3 shows the probability and size of
different responses.

Clients request in parallel from a configured HTTP ser-
ver in each of our servers. Figure 4 demonstrates the aver-
age response time (s), and Figure 5 depicts the average
throughput (Mb/s) of algorithms. We have 30 clients, with
an ability to send 500 requests.

Figure 4 depicts the average response time of the algo-
rithms. Each algorithm is executed four times, and the
results are reported with a confidence interval of 95%. As
can be seen in the figure, the proposed algorithm has a
response time lower than LBBSRT, round robin, and ran-
dom algorithms. The average response time of the algo-
rithms is 1.851 s, 2.225 s, 2.546 s, and 4.423 s,
respectively. Equation (2) shows the confidence interval
relation.

x� 1:96
σffiffiffi
n

p
� �

; (2)

where x is the average of results for each algorithm, σ is
the standard deviation of results for each algorithm, and n
is the number of times the desired algorithm is executed.

In addition, Figure 5 depicts the average throughput of
the algorithms. Each algorithm is executed four times and
a 95% confidence interval is calculated by (2). As can be
seen in the figure, the proposed algorithm has a higher
throughput than LBBSRT, round robin, and random algo-
rithms. The average throughput of the algorithms is
148.19 Mb/s, 129.98 Mb/s, 117.01 Mb/s, and 89.26 Mb/s,
respectively.

The average improvement of the response time in com-
parison with the three other algorithms—LBBSRT, round
robin, and random selection methods—is 19.58%, 33.94%,
and 57.41%, respectively. Moreover, the average improve-
ment in throughput in comparison with the three other
algorithms is 16.52%, 29.72%, and 58.27%, respectively.
As can be seen, the response time of our proposed algo-
rithm is lower than LBBSRT, round robin, and random

Send request to VIP

Write Rules
in Switch

Packet_In

Server return
response to VIP

Load balancer
(VIP)Open vSwitchClient Server

Switch change source
address and redirect

response to client
(SNAT)

Process()

Run load balancing
algorithm

Send first packet
With Packet_Out

message
Switch change

destination address
to appropriate server

(DNAT)

FIGURE 3 Time diagram for the proposed system

TABLE 1 Evaluation parameters

Parameter Value

α 0.6

β 0.4

t 2 s

m 10

TABLE 2 Proposed system configuration

CPU RAM Clients‐switch links Servers‐switch links

8 cores 10 GB 1000 Mbps 100 Mbps

SOLEIMANZADEH ET AL. | 203

selection algorithms. In addition, the throughput of our pro-
posed algorithm is higher than LBBSRT, round robin, and
random selection algorithms. To achieve a more prominent
load‐balancing effect in the proposed approach, we also
extract the CPU and memory utilization rates for each

server. Figures 6 and 7 present the CPU and memory usage
graphs for the four servers—h1, h2, h3, and h4—under
round robin, random, LBBSRT, and our proposed load‐bal-
ancing approach. From Figures 6 and 7, we observe a
slight difference in memory utilization and CPU utilization
for the four servers in the proposed load‐balancing
approach. The reason is that in our approach, we receive
the real‐time traffic of switch ports and response time of
each server. Thus, the resources of all servers are almost
equally used and there is not a server that uses its resources
much differently from the other servers. In comparison
with the round robin, random, and LBBSRT approaches,
our approach completely exploits the server resources and
thus achieves a much better load‐balancing effect. In other
words, the proposed approach uses the available resources
fairly.

TABLE 3 Size of returning objects from servers

Probability (%) Response size

40 100k (obj1)

30 512 k (obj2)

15 2 M (obj3)

8 10 M (obj4)

4 30 M (obj5)

2 50 M (obj6)

1 100 M (obj7)

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

R
es

po
ns

e
tim

e
(s

)

LBBSRT RR RNDSD–WLB

LBBSRT
RR
RND

SD–WLB

FIGURE 4 Average response time

160 SD–WLB

LBBSRT RR RNDSD–WLB

LBBSRT
RR
RND

Th
ro

ug
hp

ut
 (M

b/
s)

140

120

100

80

60

40

20

0

FIGURE 5 Average throughput

100%

SD–WLB

h1
h2
h3
h480%

60%

40%

20%

0%
LBBSRTRRRND

FIGURE 6 CPU utilization

100%

SD–WLB

h1
h2
h3
h480%

60%

40%

20%

0%
LBBSRTRRRND

FIGURE 7 Memory utilization

204 | SOLEIMANZADEH ET AL.

5 | CONCLUSION

Load balancing improves the distribution of workloads
across server farms in datacenters. As a result, end users
will have a better experience by reducing response times
and increasing throughput. In this paper, we proposed a
new load‐balancing algorithm in an SDN environment that
periodically collects the switch's port traffic and server's
response time and then chooses the most appropriate ser-
ver based on these values. Based on evaluations, the pro-
posed load‐balancing approach has a higher throughput
and lower response time in comparison to the LBBSRT,
round robin, and random selection approaches. In future
studies, we plan to consider the server's load and status
and incorporate these statistics into our work for better
decision making. In addition, we plan to increase the
number of controllers and consider the time intervals for
the collecting server's response time and switch's port traf-
fic as well as the α and β weights in a dynamic and
adaptive manner. Indeed, the stored values of server's
response time, switch's port traffic, and other network
statistics can be used as knowledge databases for machine
learning methods.

ORCID

Mahmood Ahmadi https://orcid.org/0000-0003-4110-
6824
Mohammad Nassiri https://orcid.org/0000-0002-0703-
5949

REFERENCES

1. H. Zhong, Y. Fang, and J. Cui, LBBSRT: An efficient SDN load
balancing scheme based on server response time, Future Genera-
tion Comput. Syst. 68 (2017), 183–190.

2. N. Mckeown, How SDN will shape networking, Oct. 2011, avail-
able at http://www.youtube.com/watch?v=c9-K5O_qYgA.

3. S. Schenker, The future of networking, and the past of protocols,
Oct. 2011, available at http://www.youtube.com/watch?v=YHe
yuD89n1Y.

4. H. Kim and N. Feamster, Improving network management with
software‐defined networking, IEEE Commun. Mag. 51 (2013),
no. 2, 114–119.

5. K. Gilly, C. Juiz, and R. Puigjaner, An up‐to‐date survey in web
load balancing, World Wide Web 14 (2011), no. 2, 105–
131.

6. P. Patel et al., Ananta: Cloud scale load balancing, SIGCOMM
Comput. Commun. Rev. 43 (2013), no. 4, 207–218.

7. Y. Li and D. Pan, OpenFlow based load balancing for Fat-Tree
networks with multipath support, Proc. IEEE Int. Conf. Commun.
(ICC'13), Budapest, Hungary, June 9–13, 2013,
pp. 1–5.

8. R. Wang, D. Butnariu, and J. Rexford, OpenFlow-based server
load balancing gone wild, Proc. USENIX Conf. Hot Topics
Manag. Internet, cloud, enterprise netw. Services, Boston, MA,
USA, 2011, pp. 12–22.

9. R. Gandhi et al., Duet: Cloud scale load balancing with hardware
and software, Proc. ACM Conf. SIGCOMM (SIGCOMM ‘14),
Chicago, IL, USA, Aug. 17–22, 2014, pp. 27–38.

10. Project Floodlingt, available at http://www.projectfloodlight.org.
11. Mininet, available at http://www.mininet.org.
12. Open vSwitch, available at http://www.openvswitch.org.
13. Microsoft, Tutorial guide, available at https://www.microsoft.c

om/net/core.
14. Wikipedia, Microsift Azure, available at https://en.wikipedia.org/

wiki/Microsoft_Azure.
15. Wikipedia, Zipf's law, available at https://en.wikipedia.org/wiki/

Zipf%27s_law.
16. G. Velusamy and R. Lent, Smart load-balancer for web applica-

tions, Proc. Int. Conf. Smart Digital Environ. (ICSDE ‘17), Rabat
Morocco, July 21–23, 2017, pp. 19–26.

17. T. L. Lin et al., A parameterized wildcard method based on
SDN for server load balancing, Int. Conf. Netw. Network
Applicat. (NaNA), Hakodate, Japan, July 23–25, 2016, pp.
383–386.

18. R. H. Hwang and H. P. Tseng, Load balancing and routing
mechanism based on software defined network in data centers,
Int. Comput. Symp. (ICS), Chiayi, Taiwan, Dec. 15–17, 2016, pp.
165–170.

19. Sh. Wang et al., Flow distribution‐aware load balancing for the
datacenter, Comput. Commun. 106 (2017), 136–146.

20. G. Li et al., Fuzzy logic load-balancing strategy based on soft-
ware-defined networking, in Wireless Internet. WiCON 2018,
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 230,
Springer, Cham, Switzerland, 2018, pp. 471–482.

21. Z. Guo et al., Improving the performance of load balancing in
software‐defined networks through load variance‐based synchro-
nization, Comput. Netw. 68 (2014), 95–109.

22. Y. Ma et al., Load‐balancing multiple controllers mechanism for
software‐defined networking, Wireless Personal Commun. 94
(2017), no. 4, 3549–3574.

SOLEIMANZADEH ET AL. | 205

https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0003-4110-6824
https://orcid.org/0000-0002-0703-5949
https://orcid.org/0000-0002-0703-5949
https://orcid.org/0000-0002-0703-5949
http://www.youtube.com/watch?v=c9-K5O_qYgA
http://www.youtube.com/watch?v=YHeyuD89n1Y
http://www.youtube.com/watch?v=YHeyuD89n1Y
http://www.projectfloodlight.org
http://www.mininet.org
http://www.openvswitch.org
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://en.wikipedia.org/wiki/Microsoft_Azure
https://en.wikipedia.org/wiki/Microsoft_Azure
https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law

AUTHOR BIOGRAPHIES

Kiarash Soleimanzadeh was
born in Hamedan, Iran. He
received his BS degree in soft-
ware engineering from Malayer
University, Malayer, Hamedan,
Iran, in 2014, and his MS degree
in Department of Computer and
Information Technology Engi-

neering from the Razi University, Kermanshah, Iran,
in 2018. His main research interests include com-
puter networking, software‐defined networking, load
balancing, computer graphics, databases, and big
data.

Mahmood Ahmadi received
his BS and MS degrees in com-
puter engineering from Isfehan
University, Isfahan, Iran, in
1995 and Amirkabir University
of technology of Tehran, Iran,
in 1998, respectively. He joined

the Razi University of Kermanshah, Iran, as a lec-
turer in 1998. In October 2005, he joined the

Department of Computer Engineering, Delft Univer-
sity of Technology, Delft, the Netherlands. Cur-
rently, he works as an assistant professor at the
Department of Computer Engineering, Razi Univer-
sity. His research interests include network process-
ing, approximate membership query data structures,
software‐defined networking, high‐performance com-
puting, performance modeling, and reconfigurable
architectures.

Mohammad Nassiri is an assis-
tant professor at the Computer
Department of Bu‐Ali Sina Univer-
sity. He received his BSs and MSs
degrees from Iran University of
Science and Technology (IUST)
and Sharif University of Technol-

ogy, respectively, in 2000 and 2002. He also received
his PhD in Computer Engineering from Grenoble INP,
France, in 2008. His current research interests are
mainly experimental design for high‐throughput
WLANs, energy‐aware protocol design for various
wireless technologies, and traffic classification.

206 | SOLEIMANZADEH ET AL.

